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Abstract
The relation between the properties of a specific crystallographic site and the properties of the
full crystal is discussed by using spherical tensors. The concept of spherical tensors is
introduced and the way it transforms under the symmetry operations of the site and from site to
site is described in detail. The law of spherical tensor coupling is given and illustrated with the
example of the electric dipole and quadrupole transitions in x-ray absorption spectroscopy. The
main application of the formalism is the reduction of computation time in the calculation of the
properties of crystals by band-structure methods. The general approach is illustrated by the
examples of substitutional chromium in spinel and substitutional vanadium in garnet.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper deals with the relation between the properties of
specific sites in a crystal and the properties of the crystal itself.
We shall discuss in particular the case of x-ray absorption
spectroscopy, but many of our results are general.

The aim of this paper is to introduce x-ray physicists,
experimentalists and theoreticians, to the use of spherical
tensors for analyzing theoretical and experimental spectra.
Therefore, our presentation is as pedagogical as we can
manage. As the manipulation of spherical tensors can be quite
complicated, we have tried to reduce it to the simplest possible
rules.

An atom in a crystal generally occupies a crystallographic
site that is not unique. If we take the concrete example
of a chromium atom substituting for aluminum in spinel
(MgAl2O4), the chromium atom can occupy 16 equivalent
trigonal sites in the cubic cell [1]. The (normalized) x-ray
absorption spectrum of chromium is the average of the spectra
of the chromium atoms occupying the 16 sites. To calculate
the spectrum of chromium, we need to put a chromium
atom at an aluminum site, relax the environment, carry out
a self-consistent band-structure calculation with and without
a core hole, and calculate the spectrum of this site. In a
straightforward approach, we need then to repeat the procedure
for all equivalent sites and take the average spectrum. A

considerable amount of time can be saved if we calculate the
spectrum of a single site and deduce the spectrum of the other
sites by symmetry considerations. The present paper gives all
the required tools to do so.

Let us first defend the case of spherical tensors, that
will be precisely defined in the next section. Most physical
properties are tensors and they are usually considered as
Cartesian tensors. Spherical tensors consist of a ‘refinement’
of Cartesian tensors in the sense that a Cartesian tensor is
generally the sum of several spherical tensors. For example,
a second-rank Cartesian tensor is the sum a zeroth-rank, a
first-rank and a second-rank spherical tensor. This refinement
enables us to discard irrelevant contributions. For example,
the electric quadrupole contribution to an x-ray absorption
spectrum is represented by a symmetric fourth-rank Cartesian
tensor with 36 components, whereas it is represented by the
sum of a zeroth-rank, a second-rank and a fourth-rank spherical
tensor with 15 components altogether. Moreover, the spherical
average used to represent powder samples is obtained by taking
only one spherical tensor component, whereas it is the sum of
12 Cartesian components. Thus, using spherical tensors can
save computing time.

The drawback of the spherical tensor analysis is that some
subtleties enter its practical use. One purpose of this paper is
to give a detailed presentation of these problems and of their
solutions.
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In practice, one faces the frustrating task of sorting out
the various conventions used by the authors and to determine
whether a rotation is active or passive, whether the row index
of the Wigner matrix increases from left to right as in a
normal matrix or decreases as in [2], which definition of the
Wigner matrix is used (seven inequivalent definitions are found
in the literature [3]), how tensors transform under complex
conjugation, etc.

The paper starts with a presentation of the Cartesian and
spherical tensors and a detailed description of our notation.
Then, the concept of tensor coupling is introduced and a
simple formula is given to change the coupling order. This
formula is applied to the calculation of electric dipole and
quadrupole transitions. This completes the generalities on
spherical tensors. Then, we consider the case of crystals.
We show how the symmetry of a crystal site constrains the
spherical tensor components in the reference frame of the
site and in the reference frame of the crystal. We also give
the precise formula relating these reference frames. As an
illustration, we treat the example of the Al site in spinel and
garnet. Finally, we determine the spherical tensor describing
the full crystal from those of the sites. An appendix gathers the
formulae that were used to calculate rotation matrices, Wigner
matrices and solid harmonics.

2. Cartesian and spherical tensors

A Cartesian tensor is the generalization of a scalar, a vector or a
matrix. A three-dimensional vector r = (x, y, z) = (r1, r2, r3)

is transformed by a rotation R into a vector r′ = Rr, so that
r′

i = ∑3
j=1 Ri j r j . A vector is also called a first-rank tensor. A

matrix A defined by Ai j = ri r j transforms under rotation into

A′
i j = r′

i r
′
j =

∑

lm

Ril R jm Alm . (1)

Any matrix Ai j that transforms under rotation as in equation (1)
is called a second-rank Cartesian tensor. More generally,
an nth-rank Cartesian tensor is a generalized matrix Ai1...in

that transforms under rotation as in equation (1), but with
the product of n matrices R instead of just two. Cartesian
tensors are ubiquitous in physics. For example, electric dipole
transition amplitudes are described by a first-rank tensor,
electric dipole transition intensities and electric quadrupole
transition amplitudes by a second-rank tensor, and electric
quadrupole transition intensities by a fourth-rank tensor.

Cartesian tensors have very simple transformation rules
under rotation, but they suffer from a severe drawback: they
are not irreducible. To see what this means, consider a second-
rank tensor Ai j . Its trace is t = ∑3

i=1 Aii and transforms under
rotation into

t ′ =
3∑

i=1

A′
i i =

∑

ilm

Ril Rim Alm =
∑

lm

δlm Alm = t,

where we used the fact that RRT = Id, where RT is the
transpose of R. We recover the fact that the trace of a matrix is
invariant: it transforms into itself under rotation. A second-
order Cartesian tensor gives another interesting object, the

vector v defined by vi = ∑
jk εi jk A jk , where j and k run

from 1 to 3. The Levi-Civita symbol εi jk is 1 if (i, j, k) is a
cyclic permutation of (1, 2, 3), it is −1 if (i, j, k) is another
permutation of (1, 2, 3), and it is 0 if two indices are identical.
Then, using the identity

∑
jk εi jk R jl Rkm = ∑

j Ri jε jlm , we
see that v transforms under rotation as a vector: v′ = Rv.
Therefore, from a second-rank Cartesian tensor, we can build
a linear combination of its elements (the trace) that is invariant
under rotation, and three linear combinations of its elements
that transform into each other as the components of a vector.
More generally, a tensor is said to be reducible when there are
linear combinations of its elements that transform into each
other under rotation. When a tensor is not reducible, it is called
irreducible. Thus, a vector is irreducible but a second-rank
Cartesian tensor is reducible. The irreducible tensors are called
spherical tensors and will be the main topic of this paper.

The first spherical tensors were the spherical harmonics
Y m
� . For each �, there are 2� + 1 spherical harmonics Y m

� that
transform into each other under rotation. More precisely, for
each rotation R, there is a unitary matrix D�, called a Wigner
matrix (to be precisely defined in the next section), such that
the rotation of Y m

� by R is

RY m
� =

�∑

m′=−�
Y m′
� D�

m′m(R).

Spherical tensors are defined in analogy with spherical
harmonics. An �th-rank spherical tensor, denoted by T �, is
a set of 2�+ 1 components, written T �

m , where m = −�,−�+
1, . . . , �− 1, �, that transform under rotation as

RT �
m =

�∑

m′=−�
T �

m′ D�
m′m(R). (2)

This definition is rather abstract, but we shall see how spherical
tensors are built in practice. It is an unfortunate but historical
fact that the position of � and m is different in the spherical
harmonics Y m

� and the spherical tensors T �
m .

When many spherical tensors are involved in a formula,
we use also the notation Pa , Qb, etc. For notational
convenience, we shall often write RT � = T �D�(R) for
equation (2), as for the product of a matrix and a vector.
Moreover, the product of two Wigner matrices will be denoted
by D�(R)D�(R′).

2.1. Further symmetries

A spherical tensor is a basis of an irreducible representation
of the rotation group SO(3). A different group leads to a
different concept of irreducibility. For example, an irreducible
representation of SO(3) is generally reducible for a subgroup
of SO(3) (e.g. SO(2) or a point symmetry group). In
many applications we have to consider a group larger than
SO(3), for example O(3), the direct product of the rotation
group and the group I = {1, I }, where I is the inversion
symmetry operation: I r = −r. An element of O(3) is called
a rotoinversion. By definition, for any rotoinversion g, there
is a unique rotation Rg such that either g = Rg (g is a pure
rotation) or g = I Rg (g contains the inversion). It can be
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checked that Rgg′ = Rg Rg′ and that Rg−1 = R−1
g . The group

I is of order 2 and commutative. It has two one-dimensional
irreducible representations, where the inversion is represented
by the factor 1 or −1, respectively. Therefore, according to a
general theorem ([4], p 115), spherical tensors become bases
of the irreducible representations of O(3) if they are provided
with a definite parity: the parity of T � is even if I T � = T �;
it is odd if I T � = −T �. For instance, the spherical tensor
representing electric dipole transition amplitudes is odd; the
one representing electric quadrupole transition amplitudes is
even. We denote the action of a rotoinversion on a tensor T �

with a definite parity by

gT �
m = ε(g)

�∑

m′=−�
T �

m′ D�
m′m(g), (3)

where D�(g) is a simplified notation for D�(Rg) and where ε
is the parity operator associated with T �: ε(g) = −1 if T � is
odd and g contains the inversion, ε(g) = 1 otherwise. We have
ε(gg′) = ε(g)ε(g′) = ε(g′g) and ε(g−1) = ε(g).

Time-reversal symmetry is more subtle because of its anti-
unitary nature [5]. It is taken into account by considering that
the spherical tensors are built from Hermitian operators (see
equation (4), p 61 of [3]):

(T �
m)

† = (−1)m T �
−m . (4)

In this paper, the only tensors that do not satisfy time-reversal
symmetry are those built from the polarization vector ε, that
can possibly be complex. In this case we have (T �

m(ε))
† =

(−1)m T �−m(ε
∗). This happens for instance when T � is a solid

harmonic built from a vector with complex coordinates (see
appendix B.2).

3. Notation

The fact that many conventions are found in the literature
leads us to precisely describe our notation. We consider
active rotations, i.e. rotations that move the points and not the
reference frame. For example the rotation through an angle ψ
about the z-axis is represented by

Rz(ψ) =
( cosψ − sinψ 0

sinψ cosψ 0
0 0 1

)

.

After an active rotation R, the coordinates (r1, r2, r3) of the
vector r are transformed into the coordinates r′

i = ∑
j Ri j r j

of r′ = Rr. In a passive rotation, the reference frame is
rotated: the basis vectors ei are transformed into the basis
vectors e′

i = ∑
j Ri j e j . Thus, the coordinates of a point r

are transformed by the inverse matrix: r′ = R−1r.
To describe the transformation of the properties of a

crystal under rotation, we consider the case of its charge
density ρ(r). After a rotation changing r into r′ = Rr,
the charge density ρ is transformed into a ‘rotated’ charge
density ρ ′ of the rotated crystal. To determine ρ ′, we require
the value of the charge density to be invariant under rotation.
More precisely, we want ρ ′(r′) = ρ(r). Therefore, the

rotated function ρ ′ is defined by ρ ′(r′) = ρ(R−1r′). For later
convenience, we denote the rotated function ρ ′ by Rρ. The use
of the same symbol R to denote the rotation of both the vectors
and the functions should not bring too much confusion. The
presence of the inverse rotation R−1 in the definition of Rρ
ensures that R′(Rρ) = (R′ R)ρ (see [6], p 59).

3.1. Wigner rotation matrices

We denote by D�
m′m(R) the Wigner rotation matrix correspond-

ing to the rotation R (see appendix B.3 for a definition). For
example, D�

m′m(Rz(ψ)) = δmm′ e−imψ . The Wigner rotation
matrices define a unitary representation of the rotation group,
so that

D�
m′m(R

−1) = (D�
mm′(R))∗, (5)

and

D�
m′m(RR′) =

�∑

m′′=−�
D�

m′m′′(R)D�
m′′m(R

′). (6)

3.2. Spherical harmonics

The spherical harmonics are defined by (see [2], p 68)

Y m
� (θ, φ) =

√
2�+ 1

4π
(D�

m0(Rθφ))
∗, (7)

where Rθφ is the rotation described by the Euler angles
(φ, θ, 0) (see appendix B.1.2). For notational convenience,
we denote by n the vector (sin θ cosφ, sin θ sinφ, cos θ) and
we write Y m

� (n) and Rn for Y m
� (θ, φ) and Rθφ , respectively.

This notation is justified by the fact that Y m
� (n) can be defined

for any (not necessarily normalized) vector r. The resulting
functions are called solid harmonics and are described in
appendix B.2. Solid harmonics are required, for example, in
the case of elliptically polarized x-rays because n has then
complex coordinates. A three-dimensional Cartesian vector
r = (x, y, z) can be turned into a set of three solid harmonics

Y −1
1 (r) =

√
3

8π
(x − iy), (8)

Y 0
1 (r) =

√
3

4π
z, (9)

Y 1
1 (r) = −

√
3

8π
(x + iy). (10)

The definition of spherical harmonics implies

Y m
� (Rn) =

∑

m′
Y m′
� (n)D

�
m′m(R

−1).

This relation is proved by noticing that the argument Rn of the
spherical harmonics corresponds to the argument RRn of the
Wigner matrix in equation (7). From equation (5), we have
(D�

m0(RRn))
∗ = D�

0m((RRn)
−1). The result follows from

(RRn)
−1 = R−1

n R−1 and the group representation property
defined by equation (6). The same property is true for solid
harmonics. Therefore,

(RY m
� )(r) = Y m

� (R
−1r) =

∑

m′
Y m′
� (r)D

�
m′m(R). (11)

3
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The presence of the spherical harmonics on the left of the
Wigner rotation matrices ensures that R′(RY m

� ) = (R′ R)Y m
� .

To show this, equation (11) is multiplied on the left by R′:

(R′(RY�))(r) = (R′Y�)(r)D�(R) = Y�(r)D�(R′)D�(R)

= Y�(r)D�(R′ R) = (R′ R)Y�(r).

In the foregoing proof, we simplified the notation by omitting
the component index m, as described at the end of section 2.

4. Building tensor operators

Physical properties can be represented by spherical tensors,
that can often be built by coupling lower rank tensors. We
illustrate this construction by the example of electric dipole and
quadrupole transitions. We shall use the remarkable toolbox
for spherical tensor calculations elaborated by Varshalovich
et al [3].

The basic elements of this construction are first-rank
spherical tensors. Any three-dimensional Cartesian vector
v = (x, y, z) can be turned into a first-rank spherical tensor
v1 by defining

v1
−1 = (x − iy)/

√
2,

v1
0 = z,

v1
1 = −(x + iy)/

√
2.

(12)

Note that solid harmonics Y m
� (v) are also spherical tensors

built from v and that v1 = Y1(v)
√

4π/3. However,
the factor

√
4π/3 is cumbersome and the definition v� =

Y�(v)
√

4π/(2�+ 1) is often preferred.
An ath-rank spherical tensor Pa can be coupled to a

bth-rank spherical tensor Qb into a cth-rank spherical tensor,
denoted by {Pa⊗Qb}c, and defined by

{Pa⊗Qb}c
γ =

a∑

α=−a

b∑

β=−b

(aαbβ|cγ )Pa
α Qb

β.

The symbol (aαbβ|cγ ) denote Clebsch–Gordan coeffi-
cients [2, 3], which are zero when γ �= α + β or when c does
not satisfy the triangle relation |a − b| � c � a + b. For
example, the coupling of two vectors (i.e. a = b = 1) gives
a zeroth-rank, a first-rank and a second-rank spherical tensor
(i.e. c = 0, 1, 2). The zeroth-rank tensor obtained by cou-
pling two vectors is proportional to the scalar product of these
vectors: {u1⊗v1}0 = −u · v/

√
3, because (1α1 − α|00) =

−(−1)α/
√

3. More generally, we define the scalar product
of two spherical tensors Pa and Qa of the same rank to be
(see [3], p 64 and 65)

Pa · Qa =
a∑

α=−a

(−1)αPa
−αQa

α = (−1)a
√

2a + 1{Pa⊗Qa}0.

(13)
If we consider the group O(3), then let εP and εQ be the parity
operators of Pa and Qb, respectively. The parity operator
εT of the coupled tensor T c = {Pa⊗Qb}c is defined by
εT (g) = εP (g)εQ(g).

It is often necessary to modify the coupling order of the
tensors. For example, to evaluate electric dipole transition

intensities, we have to calculate |〈 f |ε · r|i〉|2, where r is
coupled to ε by the scalar product, and the result is multiplied
by its complex conjugate. As we shall see in the next section,
it is more convenient from the physical point of view to
directly couple the x-ray polarization vectors ε and ε∗. For
this purpose, we use the recoupling identity

{Pa⊗Qa}0 · {Rd⊗Sd}0 =
∑

g

(−1)g
{Pa⊗Rd }g · {Qa⊗Sd}g

√
(2a + 1)(2d + 1)

,

(14)
where g runs from |a − d| to a + d by the triangle relation.
This identity is proved in appendix C.

In the next two sections, we illustrate the recoupling
methods with the calculation of electric dipole and quadrupole
transitions. Similar methods were used to investigate the
interference of electric and quadrupole transitions [7–10] or to
calculate x-ray scattering cross-sections [11].

4.1. Dipole

The electric dipole transition amplitudes are given by the
formula T f i = 〈 f |ε · r|i〉. If we denote 〈 f |r|i〉 by r f i ,
equation (13) gives us T f i = ε · r f i = −√

3{ε1⊗r1
f i}0.

For notational convenience, we remove the exponent 1 in
the spherical tensors ε1 and r1

f i . This should not bring
confusion: if a vector takes part in a coupling, it is a first-rank
spherical tensor. Using the recoupling identity (14), we find
the expression of the dipole transition intensity

|T f i |2 = 3{ε∗⊗r∗
f i}0{ε⊗r f i }0

=
2∑

a=0

(−1)a{ε∗⊗ε}a · {r∗
f i⊗r f i }a. (15)

Note that, for elliptic polarization, ε is complex. Each term
of a decomposition over spherical tensors often has a clear
physical meaning. In equation (15), the variables concerning
the incident x-ray (i.e. ε and ε∗) are gathered in {ε∗⊗ε}a ; the
variables concerning the crystal are in {r∗

f i⊗r f i}a . Thus, we
can easily investigate the influence of a rotation R of the crystal
on the absorption cross-section

R|T f i |2 =
2∑

a=0

(−1)a{ε∗⊗ε}a · (R{r∗
f i⊗r f i}a)

=
2∑

a=0

(−1)a{ε∗⊗ε}a · ({r∗
f i⊗r f i }a Da(R)),

where we used equation (2) and the fact that {r∗
f i⊗r f i }a is

an ath-rank spherical tensor. In particular, the spectrum of a
powder sample is given by the average over all orientations,
i.e. over all rotations R. This average is very simple when
performed with spherical tensors: 〈Da(R)〉 = δa,0. Thus, the
term a = 0 gives the spectrum of a powder, called the isotropic
spectrum.

〈|T f i |2〉 = {ε∗⊗ε}0·{r∗
f i⊗r f i}0 = 1

3
(ε∗·ε)(r∗

f i ·r f i ) = |r f i |2
3

,

where we used equation (13) and |ε|2 = 1.
To interpret the term a = 1, we use the relation between

vectors u, v and the corresponding first-rank spherical tensors

4
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u1, v1 (we restore the tensor rank in u1, v1 for clarity):
according to equation (C.1), {u1⊗v1}1 is the first-rank tensor
corresponding to the vector (i/

√
2)u × v. Therefore,

{ε∗⊗ε}1 · {r∗
f i⊗r f i }1 = − 1

2 (ε
∗ × ε) · (r∗

f i × r f i ).

The first cross-product is related to the rate of circular
polarization Pc and to the wavevector direction k̂ of the
incident x-ray by ε∗ × ε = −iPck̂ [8]. Moreover, the second
cross-product is zero for a non-magnetic sample because time-
reversal symmetry implies r∗

f i = r f i . Therefore, the term
a = 1 describes magnetic circular dichroism.

The term a = 2 describes the linear dichroism of x-ray
spectra. The number of non-zero components of {r∗

f i⊗r f i }2

depends on the symmetry of the crystal [12]. We shall
determine this number in the case of spinel and garnet.

4.2. Quadrupole

We consider the case of electric quadrupole transitions. We
start from the quadrupole transition operator T = ε · rk ·r and
we rewrite it in terms of spherical tensors using equation (C.2):
T = 3{{ε⊗r}0⊗{k⊗r}0}0. In this expression ε is coupled with
r, and k with r. As in the case of electric dipole transitions, we
want to gather all the terms concerning the crystal into a single
tensor. For this purpose, we use equation (14) with the sum
over g changed into a sum over a

T =
2∑

a=0

(−1)a{ε⊗k}a · {r⊗r}a .

The term a = 0 is zero because, according to equation (13),
{ε⊗k}0 = −(1/√3)ε · k = 0 since the polarization and
wavevectors are perpendicular. The term a = 1 is zero because
equation (C.1) gives us {r⊗r}1 = (i/

√
2)r × r = 0. Thus, T

is reduced to the single term

T = {ε⊗k}2 · {r⊗r}2 = √
5{{ε⊗k}2⊗{r⊗r}2}0.

The tensor {r⊗r}2 can be expressed in terms of spherical
harmonics (equation (23), p 67 of [3])

{r⊗r}2
m =

√
8π

15
Y m

2 (r) =
√

8π

15
r 2Y m

2 (θ, φ),

where r , θ and φ are the spherical coordinates of r. For
completeness, we give the components of {ε⊗k}2:

{ε⊗k}2
±2 = (εx ± iεy)(kx ± iky)

2
,

{ε⊗k}2
±1 = ∓ (εx ± iεy)kz + εz(kx ± iky)

2
,

{ε⊗k}2
0 = 3εzkz − ε · k√

6
=
√

3

2
εzkz.

The electric quadrupole transition intensities are propor-
tional to |T f i |2, where the transition amplitude is T f i =
〈 f |T |i〉. Therefore, |T f i |2 = 5{P2⊗Q2}0{R2⊗S2}0, with

P2 = {ε∗⊗k}2, Q2 = 〈 f |{r⊗r}2|i〉∗, R2 = {ε⊗k}2 and
S2 = 〈 f |{r⊗r}2|i〉. The recoupling identity gives us

|T f i |2 = 5{P2⊗Q2}0{R2⊗S2}0

=
4∑

a=0

(−1)a{P2⊗R2}a · {Q2⊗S2}a. (16)

The apparent simplicity of this calculation is essentially due to
the powerful tools given in [3]. A straightforward approach is
quite heavy [12].

As in the electric dipole case, the term a = 0 corresponds
to the isotropic spectrum obtained by measuring a powder.
Equation (C.3) gives us {P2⊗R2}0 = k2/(2

√
5) and the

isotropic spectrum is

〈|T f i |2〉 = k2 {Q2⊗S2}0

2
√

5
.

The calculation of this average in Cartesian coordinates is
discussed in appendix A.

If P2 = R2 (i.e. the x-rays are linearly polarized) or
Q2 = S2 (i.e. the sample is non-magnetic), then the terms
a = 1 and a = 3 are zero. More generally, for any tensor
T a with integer rank a, {T a⊗T a}c is zero if c is odd. This is
due to the symmetry of the Clebsch–Gordan coefficients [2, 3]
(bβaα|cγ ) = (−1)a+b−c(aαbβ|cγ ):

{T a⊗T a}c
γ =

∑

α,β

(aαaβ|cγ )T a
α T a

β

= (−1)2a−c
∑

β,α

(aαaβ|cγ )T a
β T a

α

= (−1)c{T a⊗T a}c
γ ,

where we first exchanged the summation variables α and β ,
then used the symmetry of the Clebsch–Gordan coefficients,
the commutativity of T a

α and T a
β , and the fact that a is an

integer.
Therefore, if we consider the case of linearly polarized x-

rays or non-magnetic samples, only the terms a = 0, 2 and 4
are possibly non-zero. The number of independent components
depends on the crystal symmetry and is tabulated in [12]. The
spherical tensors of [12] are related to the present spherical
tensors by

σ D(�,m) = −4π2α0h̄ω
∑

f

{r f i⊗r f i}�m√
3

δ(Ef − Ei − h̄ω),

σ Q(�,m) = π2α0h̄ωk2
∑

f

{Q2⊗S2}�m
2
√

5
δ(Ef − Ei − h̄ω),

where α0 is the fine-structure constant.

5. Site symmetry

We now describe how to calculate the spherical tensor of a
crystallographic site, assuming that it is invariant under the
symmetry of the site. We recall that the symmetry group
of a site consists of the operations of the space group that
leave the site invariant. In a reference frame where the site
is the origin, the symmetry group is isomorphic to a point
group (i.e. a group of rotoinversions). We can work in a

5
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reference frame corresponding either to the site symmetry or
to the crystal symmetry. If we take the example of spinel
(MgAl2O4), the crystal symmetry is cubic and a natural crystal
frame is defined by three orthonormal vectors along the edges
of the conventional cubic unit cell of the lattice. In spinel,
the aluminum site with reduced coordinates (0, 1/4, 3/4) has
a threefold symmetry axis along the (−1, 1, 1) direction.
Therefore, it is natural to take the unit basis vector e′

3 of the
site frame along this direction. The unit basis vector e′

2 is along
the (1, 1, 0) direction, which is a twofold symmetry axis of the
site. The three vectors e′

1 = e′
2 × e′

3, e′
2 and e′

3 define the
orthonormal site frame. In general, the orthonormal reference
frames naturally associated with the crystal and with a specific
site are different. Symmetrized tensors usually have fewer
non-zero components in the site frame, but they are easier to
calculate in the crystal frame. We shall describe the way to
go from one reference frame to the other. Two examples are
treated in detail: a spinel and a garnet.

5.1. Symmetrized tensor

If G is the space group of the crystal, then a site has a symmetry
group G ′, which is a subgroup of G. The number of elements
of G ′ is denoted by |G ′|. To know the form of a spherical
tensor invariant under the site symmetry, we start from an
arbitrary spherical tensor T � (having the parity of the property
we investigate) and we calculate the symmetrized tensor 〈T �〉
by using the classical formula [6]

〈T �
m〉 = 1

|G ′|
∑

g

ε(g)
�∑

m′=−�
T �

m′ D�
m′m(g), (17)

where g runs over the rotoinversion parts of the symmetry
operations of the subgroup G ′. In this section, the arguments g
or h of D� and ε stand for the rotoinversion parts of the space
group operations g and h.

From the physical point of view, equation (17) means that
the tensor 〈T �〉 is obtained by averaging over all the symmetry
operations that leave the site invariant. From the mathematical
point of view, we project onto the subspace that is invariant
under any symmetry operation of G ′. To check this, take
any operation g in G ′ and evaluate the action of g on the
symmetrized tensor. Using equation (17), where the elements
of G ′ are now denoted by h, we find

g〈T �
m〉 = 1

|G ′|
∑

h

ε(h)ε(g)
∑

m′m′′
T �

m′′ D�
m′′m′(g)D�

m′m(h)

= 1

|G ′|
∑

h

ε(gh)
∑

m′′
T �

m′′ D�
m′′m(gh) = 〈T �

m〉.

Indeed, G ′ being a group, the set of operations gh where h runs
over G ′ is the same as the set of operations of G ′.

5.2. Site and crystal frames

The rotoinversions g can be expressed either in the site frame
or in the crystal frame. We shall see in our two examples that
symmetrized tensors are simpler when expressed in the site
frame. Moreover, some computer programs need to be used in

the site frame1. However, the action of the rotoinversions on a
vector r is easier to determine in the crystal frame, because they
belong to the tabulated symmetry operations of the crystal [18].
Both cases will be treated in the examples of the following
sections.

It is also necessary to describe precisely how to go from
one reference frame to the other. If e1, e2, e3 are the
orthonormal axes of the crystal frame and e′

1, e′
2, e′

3 those
of the site frame, there is an orthogonal matrix M such that
e′

i = ∑
j Mi j e j . This matrix defines a rotoinversion g by

(gr)i = ∑
j Mi j r j . If we take the example of spinel discussed

at the beginning of section 5, if ei are the orthonormal axes
of the cubic unit cell and e′

i are the orthonormal axes of the
site frame, then M is the rotation matrix representing the pure
rotation g with Euler angles (0, arccos(1/

√
3), π/4). It is the

inverse of the rotation matrix of equation (B.2). It can be
checked that e′

3 = (−e1 + e2 + e3)/
√

3 (i.e. the threefold axis
is the z-axis of the site along the (−1, 1, 1) direction of the
cube) and e′

2 = (e1 + e2)/
√

2 (i.e. the y axis of the site is
along the (1, 1, 0) direction of the cube). If h is a symmetry
operation in the (cubic) crystal frame leaving the site invariant,
the basis change formula of linear algebra implies that ghg−1

is the same symmetry operation in the (trigonal) site frame. A
spherical tensor T � will be denoted by T �(3) when expressed
in the trigonal site frame and by T �(4) when expressed in the
cubic crystal frame. The arguments 3 and 4 mean that the z
axis is along a threefold axis for a trigonal basis and a fourfold
axis for a cubic basis. The relation between T �(3) and T �(4)
is given by the formula

T �
m(4) =

∑

m′
T �

m′(3)D�
m′m(g). (18)

We now give two examples.

5.3. The example of spinel

We illustrate this method with the example of the aluminum
site in spinel MgAl2O4, which is the prototype of the spinel
structural family. The spinel structure is derived from a
face-centered-cubic close-packing of oxygen atoms with a
space group symmetry Fd 3̄m. The conventional cubic cell
contains eight formula units, i.e. 32 oxygen atoms with
24 cations in tetrahedral and pseudo-octahedral interstices.
With origin choice 2 [18], the Mg2+ cations occupy eight
tetrahedral sites, which are located at the special 8a Wyckoff
positions (1/8, 1/8, 1/8), with 4̄3m (Td) point symmetry. The
Al3+ cations occupy 16 pseudo-octahedral sites at the special
16d Wyckoff positions (0, 1/4, 3/4), with 3̄m (D3d) point
symmetry. This symmetry corresponds to a small elongation
of the octahedron along the trigonal axis, arising from a small
departure of the position of the oxygen atoms from the perfect
fcc arrangement. The O2− ions are located at the Wyckoff
positions 32e (u, u, u) with point symmetry 3m.

1 The most prominent example is the package of multiplet programs written
by Cowan, Butler, Thole, Ogasawara and Searle [13–17].
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5.3.1. The site frame. The simplest expressions are obtained
when the reference frame of the site is used. The point group
of the site we consider is D3d. The group D3d has six pure
rotations and the same six rotations multiplied by the inversion.
We assume that the property we investigate is represented by
an even tensor, so that we only have to consider the six pure
rotations. It is natural to take the z-axis along the threefold
axis and the y axis along one of the C2 axes. The formulae
do not depend on which C2 axis is chosen. However, they
would be different if the y axis were chosen, for example,
between two C2 axes. The six pure rotations are the unit, the
C3 rotation about the z-axis through the angle 2π/3, its square
C2

3 , the C2 rotation about the y-axis through the angle π and
the other two rotations C3C2 and C2

3 C2. These rotations have
Euler angles (0, 0, 0), (0, 0, 2π/3), (0, 0, 4π/3), (0, π, 0),
(0, π, 4π/3) and (0, π, 2π/3), respectively. These rotations
will be denoted by R1, . . . , R6, respectively.

To calculate the symmetrized tensors for this site, we use
equation (17). The special cases given in appendix B.3.1
enable us to show that D�

m′m(R1) = δm′m , D�
m′m(R2) =

δm′me−2miπ/3 and D�
m′m(R3) = δm′me−4miπ/3. Therefore, the

sum
∑3

j=1 D�
m′m(R j ) is 3δm′m if m is an integer multiple of 3,

and zero otherwise. We calculate the Wigner matrices for the
other three rotations and we obtain

1

|G ′|
∑

R′
D�

m′m(R
′) = 1

6

6∑

j=1

D�
m′m(R j )

= δm′m + (−1)�−mδm,−m′

2
if m and m ′ are integer multiples of 3, and zero otherwise.
Equation (17) is then applied to a general fourth-rank tensor
T 4

m(3), where the argument (3) denotes the trigonal axes, and
we obtain the non-zero components of the symmetrized tensor
〈T 4

m(3)〉, 〈T 4
0 (3)〉 = T 4

0 (3),

〈T 4
3 (3)〉 = −〈T 4

−3(3)〉 = T 4
3 (3)− T 4

−3(3)

2
.

For the second-rank tensor, all symmetrized components are
zero, except for 〈T 2

0 (3)〉 = T 2
0 (3). Of course, we also

have the relation 〈T 0
0 (3)〉 = T 0

0 (3), which is valid for any
group. We now show that time-reversal symmetry implies that
the symmetrized tensors are real. According to equation (4)
(T �

0 )
∗ = T �

0 , so that T �
0 is real. Still, by equation (4) we have

(T �
3 )

∗ = −T �
−3. Thus, 〈T 4

3 (3)〉∗ = (−T 4
−3(3) + T 4

3 (3))/2 =
〈T 4

3 (3)〉 is real as well.
In x-ray absorption spectra, the symmetrized tensors are

spectral functions depending on the photon energy. For the
example of the electric quadrupole transitions we take, for each
energy h̄ω,

T � = π2α0h̄ω

×
∑

f

{〈 f |{r⊗r}2|i〉∗⊗〈 f |{r⊗r}2|i〉}�δ(Ef − Ei − h̄ω),

where α0 is the fine-structure constant and Ei and Ef the
energies of the initial and final states. The symmetrized tensors
〈T �(3)〉 can be calculated by multiplet programs. The value of
these tensors for a chromium atom substituting for aluminum
in spinel is given in figure 1 (see [1] for more details).

Figure 1. The symmetrized tensors 〈T 0
0 (3)〉, 〈T 2

0 (3)〉, 〈T 4
0 (3)〉 and

〈T 4
3 (3)〉 in the site frame, for the electric quadrupole transitions of

the K edge of a chromium atom substituting for aluminum in spinel.
After averaging over the sites, only the symmetrized tensors 〈T 0

0 〉 and
〈T 4

0 〉 remain as independent parameters.

5.3.2. The crystal frame. We consider now the same aver-
age in the crystal frame. The Al site with reduced coordinates
(0, 1/4, 3/4) has a threefold axis along the (−1, 1, 1) direc-
tion and a twofold axis along the (0, 1, 0) direction. Therefore,
the six pure rotations of D3d are now (i) the identity, denoted
by (x, y, z), (ii) a C3 rotation about (−1, 1, 1), denoted by
(−y, z,−x), (iii) its square (−z,−x, y), (iv) a rotation of π
about (1, 1, 0) denoted by (y, x,−z), (v) a rotation of π about
(1, 0, 1) denoted by (z,−y, x) and (vi) a rotation of π about
(0, 1,−1) denoted by (−x,−z,−y). The notation used for the
rotations is the result of the operation Rr in the cubic axes. For
example, the C3 rotation gives

Rr =
( 0 −1 0

0 0 1
−1 0 0

)( x
y
z

)

=
(−y

z
−x

)

.

The corresponding Euler angles are (0, 0, 0), (π/2, π/2, 0),
(π, π/2, π/2), (0, π, π/2), (0, π/2, π) and (3π/2, π/2,
3π/2).

We apply again equation (17) to the general second-rank
tensor T 2

m(4), where the argument (4) stands for the cubic axes.
This gives us the symmetrized tensor 〈T 2(4)〉

〈T 2
0 (4)〉 = 0,

〈T 2
−2(4)〉 = 〈T 2

2 (4)〉∗ = −iλ,

〈T 2
−1(4)〉 = −〈T 2

1 (4)〉∗ = (1 + i)λ,

(19)

with

λ = Im T 2
2 (4)− Re T 2

1 (4)+ Im T 2
1 (4)

3
,

where we have used time-reversal symmetry as in equation (4).

7
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Note that λ is real. For the tensor 〈T 4(4)〉,

〈T 4
0 (4)〉 =

√
14
5 〈T 4

4 (4)〉 =
√

14
5 〈T 4

−4(4)〉∗ = ξ,

〈T 4
−3(4)〉 = −〈T 4

3 (4)〉∗ = (1 − i)
√

7ζ,

〈T 4
−2(4)〉 = 〈T 4

2 (4)〉∗ = 2i
√

2ζ,

〈T 4
−1(4)〉 = −〈T 4

1 (4)〉∗ = (1 + i)ζ,

(20)

with

ξ = 7T 4
0 (4)+ √

70 Re T 4
4 (4)

12
,

ζ = −{√7(Re T 4
3 (4)+ Im T 4

3 (4))+ 2
√

2 Im T 4
2 (4)

+ Re T 4
1 (4)− Im T 4

1 (4)}/24.

Note that ξ and ζ are real.

5.3.3. From site to crystal frame. From this example, it is
clear that the symmetrized tensor 〈T �(3)〉 in the site frame is
much simpler than the same tensor 〈T �(4)〉 in the crystal frame.
The relation between the trigonal and cubic axes is worked out
in appendix B.4.

To go from one to the other we apply equation (18) and
we obtain the relations

〈T 4
0 (4)〉 = −7〈T 4

0 (3)〉 + 2
√

70〈T 4
3 (3)〉

18
, (21)

〈T 4
−2(4)〉 = i

√
10〈T 4

0 (3)〉 − √
7〈T 4

3 (3)〉
9

. (22)

We recover equations (20) with

ζ = 2
√

5〈T 4
0 (3)〉 − √

14〈T 4
3 (3)〉

36
,

ξ = −7〈T 4
0 (3)〉 + 2

√
70〈T 4

3 (3)〉
18

.

For the second-rank tensor we find equations (19) with
λ = −〈T 2

0 (3)〉/
√

6. For the zeroth-rank tensor we have
obviously 〈T 0

0 (4)〉 = 〈T 0
0 (3)〉.

5.4. The example of garnet

We consider now the Al site in garnet with the example of
grossular Ca3Al2(SiO3)4, which is a cubic mineral with the
space group Ia3̄d . The conventional cubic cell contains 96
oxygen, 24 calcium, 24 silicium and 16 aluminum atoms.
The Al3+ cations are at the 16a Wyckoff positions. We put
vanadium at the Al site (1/2, 1/2, 0), which is a slightly
distorted octahedron, with a small elongation along the
(−1, 1, 1) axis of the cube, and has the 3 (C3i) point symmetry.

We calculate the symmetrized tensor in the site frame as
for spinel, but with the smaller symmetry group C3i.

We find that the non-zero tensor components are [12]
〈T 4

−3(3)〉, 〈T 4
0 (3)〉, 〈T 4

3 (3)〉, 〈T 2
0 (3)〉 and 〈T 0

0 (3)〉, as illustrated
in figure 2 (see [19] for more details).

It would not be very illuminating to calculate directly
the symmetrized tensor in the crystal frame. It is more
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<T4 3(3)>

<T4 0(4)>

Figure 2. The symmetrized tensors 〈T 0
0 (3)〉, 〈T 2

0 (3)〉, 〈T 4
0 (3)〉 and

〈T 4
3 (3)〉 in the site frame, as well as 〈T 4

0 (4)〉 (for α = 0) in the crystal
frame, for the electric quadrupole transitions at the K edge of a
vanadium atom substituting for aluminum in grossular garnet.

interesting to rotate the tensor. Indeed, when the site has a
C3i symmetry group, the z-axis of the orthonormal site frame
is specified by the rotation axis, but the y-axis is arbitrary in
the plane perpendicular to the rotation axis. This arbitrariness
can be quite useful. For instance, the parametrization of
the crystal-field Hamiltonian is simplified by choosing the y-
axis so that a crystal-field parameter is set to zero (see [14]
p 184). This simplifies the calculation of the eigenstates but
the parameter reappears as the angle α between the y-axis and
the (1, 1, 0) direction of the cube in the plane perpendicular to
the (−1, 1, 1) direction.

The corresponding rotation matrix is

R =
√

2

3

( cos(α + π/3) cos(α + 2π/3) cosα
sin(α + π/3) sin(α + 2π/3) sinα

−1/
√

2 1/
√

2 1/
√

2

)

.

The Euler angles are α, β = arccos(1/
√

3) and γ = π/4.
The angle α describes a rotation about the axis (−1, 1, 1).
Therefore, the α dependence of the result is very simple:
T �

m(α) = T �
m(0)e

−miα , because the corresponding Wigner
matrix is D�

m′m = δmm′ e−imα .
To calculate the symmetrized tensor 〈T 4

m(4)〉 in the cubic
axes, we use equation (18), we put s = 〈T 4

0 (3)〉, tr + iti =
e−3iα〈T 4

3 (3)〉 and we obtain

〈T 4
−4(4)〉 = 〈T 4

4 (4)〉∗ = −
√

70s + 20tr − 12i
√

3ti
36

,

〈T 4
−3(4)〉 = −〈T 4

3 (4)〉∗ = (1 − i)
2
√

35s − 7
√

2tr + 3i
√

6ti
36

,

〈T 4
−2(4)〉 = 〈T 4

2 (4)〉∗ = i

√
10s − √

7tr
9

,

〈T 4
−1(4)〉 = −〈T 4

1 (4)〉∗ = (1 + i)
2
√

5s − √
14tr + 3i

√
42ti

36
,

〈T 4
0 (4)〉 = −7s + 2

√
70tr

18
.

(23)

8
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The symmetrized second-rank tensor in the cubic crystal
frame is

〈T 2
0 (4)〉 = 0,

〈T 2
−2(4)〉 = 〈T 2

2 (4)〉∗ = −iλ,

〈T 2
−1(4)〉 = −〈T 2

1 (4)〉∗ = (1 + i)λ,

where λ = −〈T 2
0 (3)〉/

√
6 is real.

The effect of the angle α on the experimental spectrum can
be considerable, as is illustrated in figure 3.

6. From site symmetry to crystal symmetry

We consider in this section another type of problem. We
assume that we have calculated a symmetrized tensor 〈T �〉
for a certain site A. We want to know the value of the same
tensor for all the sites equivalent to A. In the first section,
we describe how this can be done. In an x-ray absorption
measurement, we measure the average of the signals coming
from all sites of the crystal. We present two ways to calculate
the average spectrum: the coset method and the brute force
method. Finally, we treat the examples of spinel and garnet.

6.1. Changing site

In general, the symmetry of the crystal generates several
equivalent sites. Assume that we have calculated a physical
property described by a spherical tensor T � for a given site
A. We want to calculate the same property for the equivalent
site B.

If rA and rB are the position vectors of sites A and B,
there is a symmetry operation g of the space group such that
rB = grA. If we denote by GA and GB the symmetry groups
of sites A and B, then any rotoinversion h of GA is transformed
by g into the rotoinversion ghg−1 of GB. A word of caution
is in order here. There are two ways to consider h. If it is
an element of the space group, it is generally not written as a
rotoinversion because it can contain a translation when site A
is not at (0, 0, 0). If the origin of the crystal frame is translated
to A, then h is a rotoinversion but g contains now an additional
translation. In practice, we can drop the translation of g and
keep only its rotoinversion part. This will be done implicitly in
the following (i.e. h and g will stand for the rotoinversion parts
of the space group operations h and g).

The tensor T �(B) at site B is related to the tensor T �(A)
at site A by the relation

T �
m(B) = ε(g)

�∑

m′=−�
T �

m′(A)D�
m′m(g

−1). (24)

We are now facing a typical subtlety of crystal symmetry. From
equation (18), we could have expected the argument of the
Wigner matrix to be g instead of g−1. This is actually not the
case because, by moving the atoms of the crystal, the operation
g transports the reference frame of the site. Therefore, we are
in the passive point of view and we need to use g−1 since our
convention uses the active point of view.
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Figure 3. The symmetrized tensor 〈T 4
0 (4)〉 in the crystal frame as a

function of α, for the electric quadrupole transitions at the K edge of
a vanadium atom substituting for aluminum in grossular garnet.

To check this, we calculate the symmetrized tensor
around B.

〈T �
m(B)〉 = 1

|GB|
∑

hB∈GB

ε(hB)

�∑

m′=−�
T �

m′(B)D�
m′m(hB).

Now, we can use the fact that, for each rotoinversion hB of
GB there is a unique rotoinversion hA of GA such that hB =
ghAg−1. Therefore,

〈T �
m(B)〉 = 1

|GA|
∑

hA∈GA

ε(ghAg−1)

×
�∑

m′=−�
T �

m′(B)D�
m′m(ghAg−1),

where we used |GA| = |GB|, a consequence of the
isomorphism between GA and GB. We see that this
is only compatible with the transformations T �(B) =
ε(g)T �(A)D�(g−1) and 〈T �(B)〉 = ε(g)〈T �(A)〉D�(g−1).

6.2. Changing the x-ray beam

If we have calculated the spectrum of site A for a given
incident x-ray beam, it is possible to obtain the spectrum of
any site equivalent to A by calculating the spectrum of site A
for a rotated x-ray beam. This is physically clear because, if
you rotate both the crystal and the x-ray, the spectrum does
not change. Thus, if site A is measured with a polarization
ε and a wavevector k, the spectrum obtained by applying
the rotoinversion g on the crystal around A is same as the
spectrum of the crystal in its original position, measured with
a polarization g−1ε and a wavevector g−1k. To show this,
we prove more generally that, if Pa and Qa are two ath-
rank tensors, then Pa · (gQa) = εP (g)εQ(g)(g−1 Pa) · Qa .
Equations (3) and (13) give us

Pa · (gQa) = εQ(g)P
a · (Qa Da(g))

= εQ(g)
∑

αβ

(−1)αPa
−αQa

βDa
βα(g).

9
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The symmetry relation (see [3], p 79) Da
βα(g) =

(−1)β−αDa
−α−β (g−1) enables us to write

Pa · (gQa) = εQ(g)
∑

αβ

(−1)βPa
−αDa

−α−β(g
−1)Qa

β

= εQ(g)
∑

β

(−1)β(Pa Da(g−1))−βQa
β

= εQ(g)εP(g)(g
−1 Pa) · Qa,

because g−1 Pa = ε(g−1)Pa Da(g−1) and ε(g)ε(g−1) = 1.
For the example of the electric dipole transition

probability (15) we find

{ε∗⊗ε}a ·g({r∗
f i⊗r f i}a) = g−1({ε∗⊗ε}a) ·{r∗

f i⊗r f i }a . (25)

It remains to prove that the rotation of {ε∗⊗ε}a corresponds to
the rotation of ε∗ and ε. This is done by using the following
identity:

g{Pa⊗Qb}c = {(g Pa)⊗(gQb)}c.

To demonstrate the latter identity, we write the action of a
rotoinversion g in terms of the parity operators and the Wigner
matrices, and we write the coupled tensor in terms of the
Clebsch–Gordan coefficients:

g{Pa⊗Qb}c
γ = εP (g)εQ(g)

∑

αβγ ′
(aαbβ|cγ ′)Pa

α Qb
βDc

γ ′γ (g).

(26)
The classical identity (C.4) transforms this expression into

g{Pa⊗Qb}c
γ = εP (g)εQ(g)

×
∑

αβα′β ′
(aα′bβ ′|cγ )Pa

α Qb
βDa

αα′ (g)Db
ββ ′(g)

=
∑

α′β ′
(aα′bβ ′|cγ )(g P)aα′(gQ)bβ ′ = {(g Pa)⊗(gQb)}c

γ .

Equations (25) and (26) yield

{ε∗⊗ε}a · g({r∗
f i⊗r f i}a) = {(g−1ε∗)⊗(g−1ε)}a · {r∗

f i⊗r f i}a .

In other words, transforming the crystal by g gives the same
result as transforming the x-ray beam by g−1. The same
result is true for the electric quadrupole transition probabilities,
except for the fact that k is rotated by g−1 as well.

6.3. The coset method

The coset method is a powerful way to calculate the tensor
averaged over the crystal from the tensor symmetrized over
a single site. However, to make it work, we first need to
modify the space group G. For this purpose, we choose a
(not necessarily primitive) unit cell of the crystal. There is a
group of translations T such that the action of T on the unit
cell generates the crystal. We also assume that the group T is
invariant under the operations of the point group of G (i.e. the
set of rotoinversion parts of the operations of G). If we take the
example of spinel, we can choose as a unit cell the conventional
cubic cell, which is not primitive. The group T is generated by
the pure translations along three orthogonal edges of the cube.
If we choose the primitive rhombohedral cell, the group T will
be generated by the rhombohedral axes.

To define the reduced space group G, we first consider
an equivalence relation where two space group operations are
equivalent if their translational parts differ by an element of
T . Then, the elements of G are the equivalence classes of
G under this equivalence relation. We assume that the group
T is invariant under the operations of the point group of the
space group G. Thus, the product in G induces a product in
G and G is a group. More intuitively, the operations of G
can be obtained from the operations of G by applying periodic
boundary conditions to the unit cell. Consider for instance the
symmetry operation gr = (y + 1/4, x + 3/4,−z + 1/2). We
have g2r = (x + 1, y + 1, z) in G but g2r = (x, y, z) in G
because of the periodic boundary conditions. The group G has
a very handy property: it is finite [4].

6.3.1. Mathematical aspects. We first introduce some
mathematical concepts [6]. If g is an element of a group G
and H a subgroup of G, the set gH = {gh : h ∈ H } is called
a coset. If we take two elements g and g′ of G, then gH and
g′H are either identical or disjoint (i.e. they have no element
in common). The number of different cosets is n = |G|/|H |
(it is an integer by the Euler–Lagrange theorem [6]), and the
number of elements in each coset is |H |. Moreover, every
element of G belongs to one and only one coset. Therefore,
if we pick up an arbitrary element gi in each coset, we have
G = g1 H ∪ · · · ∪ gn H and each gi is called a representative
of its coset.

6.3.2. Cosets in a crystal. We now apply these concepts
to a crystal. We take the crystal symmetry group to be G.
By definition, the symmetry group of a site A is the set of
operations of the space group G that leave site A invariant. It is
the same as the set of operations of G that leave A invariant [4].
More precisely, if rA is the coordinate vector of site A, then
GA = {g ∈ G|g(rA) = rA}. It is clear that GA is isomorphic to
a subgroup of G. In the unit cell, the number of sites equivalent
to A is n = |G|/|GA|. The group G is partitioned into n cosets
g1GA, . . . , gn GA. All the elements of a given coset send site
A to the same equivalent site.

The symmetrized tensor 〈T �〉X over the full crystal is
obtained from the site-symmetrized tensor 〈T �〉A by the
operation

〈T �〉X = 1

n

n∑

i=1

ε(gi)〈T �〉A D�(g−1
i ). (27)

Equation (27) can be described by saying that, starting from
the average over the symmetry of site A, we go to all equivalent
sites with gi and we average over the symmetry of these other
sites.

We show now that equation (27) gives the same result as
an average over all crystal symmetry operations. We already
know that

〈T �〉A = 1

|GA|
∑

h∈GA

ε(h)T �D�(h)

= 1

|GA|
∑

h∈GA

ε(h)T �D�(h−1),

10
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because the sum over the elements of a group is the same as
the sum over the inverse elements of this group and ε(h−1) =
ε(h). Therefore

〈T �〉X = 1

n|GA|
n∑

i=1

∑

h∈GA

ε(h)ε(gi)T
�D�(h−1)D�(g−1

i )

= 1

|G|
n∑

i=1

∑

h∈GA

ε(hgi)T
�D�(h−1g−1

i )

= 1

|G|
n∑

i=1

∑

h∈GA

ε(gih)T
�D�((gih)

−1)

= 1

|G|
∑

g∈G

ε(g)T �D�(g),

where we used (gi h)−1 = h−1g−1
i and |G| = n|GA|. Note that

the proof holds because we defined cosets to be gi GA (i.e. left
cosets) and not GAgi (i.e. right cosets).

In other words, the average over the site symmetry
followed by the average over the sites gives the average over
the crystal symmetry. This can be considered as a factorization
of the average, because

∑
g = ∑

h

∑
g−1

i
. It can be checked

that the result of equation (27) is the same if we replace gi by
any g′

i in gi GA. We illustrate the coset method with our two
favorite examples, spinel and garnet.

6.3.3. The example of spinel. We call the site (0, 1/4, 3/4) of
the spinel structure site A. The reduced space group G has 192
operations2. Twelve of them leave site A invariant: (x, y, z),
(−z+3/4,−x +1/4, y+1/2), (−y+1/4, z−1/2,−x +3/4),
(y−1/4, x +1/4,−z+3/2), (−x, 1−z, 1−y), (z−3/4,−y+
1/2, x + 3/4), (−x,−y + 1/2,−z + 3/2), (z − 3/4, x +
1/4, 1− y), (y−1/4, 1−z, x +3/4), (−y+1/4,−x +1/4, z),
(x, z − 1/2, y + 1/2), and (−z + 3/4, y,−x + 3/4). This
set of 12 operations defines a group isomorphic to D3d. The
isomorphism ϕ is described explicitly as follows. If rA is the
coordinate vector of site A, for any operation g of the set, we
define the operation ϕ(g) by ϕ(g)(r) = g(r + rA) − rA. In
practice, ϕ(g) is obtained by removing the translation of g.
The map ϕ is an isomorphism because ϕ(g′g) = ϕ(g′)ϕ(g):

ϕ(g′)ϕ(g)(r) = ϕ(g′)(g(r + rA)− rA)

= (g′g)(r + rA)− rA = ϕ(g′g)(r),

and it can be checked that the images by ϕ of the first six
operations are the rotations listed in section 5.3.2, the images
of the other six operations are the same rotations multiplied by
the inversion. The space group operations g are selected by the
condition that the site is fixed: g(rA) = rA. Thus, the origin is
a fixed point of ϕ(g): ϕ(g)(0) = g(rA)− rA = 0.

There are 16 sites equivalent to A because the ratio
|Fd 3̄m|/|D3d | is 16. However, each site is equivalent to three
other sites by pure lattice translations with translation vectors
(1/2, 1/2, 0), (1/2, 0, 1/2) and (0, 1/2, 1/2). The x-ray
spectrum of these sites will be equal because their orientations
with respect to the x-ray beam are the same. Therefore, we
are left with four equivalent sites: A itself and the sites with

2 This is because we use the conventional cubic unit cell [18]. Using a
primitive (rhombohedral) unit cell reduces this number to 48.

coordinates (1/4, 3/4, 0), (3/4, 0, 1/4) and (1/2, 1/2, 1/2).
A representative of the coset corresponding to each of these
sites is (y, z, x), (z, x, y) and (−x + 1/2, y + 1/4, z − 1/4).

6.3.4. The example of garnet. We consider now site A as the
Al site in grossular garnet with coordinates (1/2, 1/2, 0). It
is invariant by the following six operations: identity, (x, y, z);
rotation through 2π/3 about the (−1, 1, 1) axis, (1 − y, z +
1/2,−x + 1/2); rotation through 4π/3 about the (−1, 1, 1)
axis, (−z + 1/2, 1 − x, y − 1/2); and the same operations
multiplied by the inversion, (1 − x, 1 − y,−z), (y,−z +
1/2, x − 1/2) and (z + 1/2, x,−y + 1/2). This group is C3i.
The number of cosets (i.e. the number of sites equivalent to
A) is |Ia3̄d|/|C3i| = 16. If we remove the lattice translation
(1/2, 1/2, 1/2) we are left with eight equivalent sites.

The approach in terms of cosets is quite powerful in
practice because it completely avoids the explicit description
of the sites and of the geometric operations that transform
a specific site into another one. Many programs compute
the symmetry operations of the sites (for example Quantum-
ESPRESSO [20]). It is thus enough to take one of these
sites, to choose any representative gi in each coset and to
calculate the contribution of all equivalent sites by the formula
ε(gi)〈T �〉A D�(g−1

i ). The average over the crystal is then
obtained with equation (27).

6.4. The brute force method

If one is not interested in the contribution of each site to
the spectrum of the crystal, a still simpler solution is to take
the average of 〈T �〉A over all the symmetry operations of the
crystal. This is not very clever because the site operations
have already been taken into account and we average over
them a second time, but this method can simplify the computer
implementation.

We show now that averaging the site-symmetrized tensor
over all the symmetry operations of the crystal gives the same
result as the coset method.

1

|G|
∑

g∈G

ε(g)〈T �〉A D�(g)

= 1

|GA||G|
∑

h∈GA

∑

g∈G

ε(h)ε(g)T �D�(h)D�(g)

= 1

n|GA|2
∑

h,h′∈GA

∑

i

ε(h)ε(h′)ε(gi)

× T �D�(h)D�(h′)D�(g−1
i )

= 1

n|GA|
∑

h∈GA

∑

i

ε(h)ε(gi)T
�D�(h)D�(g−1

i )

= 〈T �〉X ,

where we used the identity
∑

h,h′∈GA
ε(hh′)D�(hh′) =

|GA|∑h∈GA
ε(h)D�(h). This equation is readily established

by noting that, in the sum
∑

h,h′∈GA
, each group element

appears exactly |GA| times.
Therefore, the average over all the symmetry operations of

the crystal gives the same result as the average over the sites,
irrespective of the number of equivalent sites.

11
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6.5. The case of spinel

We illustrate the coset method with the case of spinel. We
first notice that the absorption cross-section is invariant under
a translation of the Bravais lattice, because such a translation
multiplies the wavefunction by a phase (independent of r) that
disappears in the square modulus. Therefore, by removing
the translations, we can replace the representatives of the four
cosets given in section 6.3.3 by the four rotations about the z-
axis of the crystal through angles 0, π/2, π and 3π/2. For
a fourth-rank tensor, the average over these coset operations
is rather drastic. The only non-zero elements of the matrix
M = (1/4)

∑
i D4(g−1

i ) are M(−4,−4) = M(0, 0) =
M(4, 4) = 1. Therefore, the crystal-averaged fourth-rank
tensor is 〈T 4〉X = 〈T 4(4)〉M :

〈T 4
0 〉X =

√
14
5 〈T 4

4 〉X =
√

14
5 〈T 4

−4〉X = 〈T 4
0 (4)〉.

The relation between 〈T 4
0 (4)〉 and the site-symmetrized tensor

in the trigonal axes is given by equation (21).
For a second-rank tensor, the matrix M = (1/4)

∑
i D2

(g−1
i ) has a single non-zero element: M(0, 0) = 1. Therefore

〈T 2
0 〉X = 0, as expected [12].

6.6. The case of garnet

To calculate the spherical tensor of garnet, we use the brute
force method and calculate M = (1/48)

∑
g D�(g), where the

sum runs over all the symmetry operations of the cube and the
tensor is assumed to be even.

For � = 4, the only non-zero matrix elements are

M(4, 4) = M(−4, 4) = M(4,−4) = M(−4,−4) = 5
24 ,

M(4, 0) = M(0, 4) = M(0,−4) = M(−4, 0) =
√

70
24 ,

M(0, 0) = 7
12 .

Therefore, the only non-zero components of a fourth-rank
tensor are

〈T 4
0 〉X =

√
14

5
〈T 4

4 〉X =
√

14

5
〈T 4

−4〉X = 〈T 4
0 (4)〉

= −7s + 2
√

70tr
18

,

where we recall that s = 〈T 4
0 (3)〉 and tr = (1/2)(e−3iα〈T 4

3 (3)〉+ e3iα〈T 4
3 (3)〉∗).

7. Conclusion

We have tried to provide the main tools required for the
calculation of a site-dependent property in a crystal. Although
most of these methods are probably known to the expert, we
were not able to find them presented in a systematic and
pedagogical way. These tools proved quite efficient for the
calculation of the x-ray absorption spectra of impurities in
crystals [1]. The computation time was approximately divided
by the number of equivalent sites of the crystal. Moreover,
the group theoretical methods were useful to determine the

properties of the spectra, for example the fact that the spectra
of two sites have to be equal for a specific direction of the
polarization vector.

The property we considered (x-ray absorption spectrum)
is relatively simple because translations do not play any role.
A similar calculation for x-ray scattering would require an
explicit treatment of translations. The tools provided here can
be extended to this case.
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Appendix A. Spherical average

In Cartesian coordinates, the electric dipole absorption cross-
section can be written, for linearly polarized x-rays, as

σ D(ε) =
∑

i j

εiε jσi j ,

with

σi j = 4π2α0h̄ω
∑

f

〈i |ri | f 〉〈 f |r j |i〉δ(Ef − Ei − h̄ω).

It is well known that the absorption spectrum of a powder is
given by the spherical average

〈σ D(ε)〉 = 1
3 (σxx + σyy + σzz).

For electric quadrupole transitions, the average is more
complicated. If we write the electric quadrupole absorption
cross-section for linearly polarized x-rays

σ(ε,k) =
∑

i jlm

εi k jεlkmσi jlm, (A.1)

with

σi jlm = π2α0h̄ω
∑

f

〈i |ri r j | f 〉〈 f |rlrm |i〉δ(Ef − Ei − h̄ω),

(A.2)
the absorption by a powder is given by the spherical average

〈σ(ε,k)〉 = k2

30
(2σxxxx + 2σyyyy + 2σzzzz + 6σxyxy + 6σxzxz

+ 6σyzyz − σxxyy − σxxzz − σyyxx − σzzxx

− σyyzz − σzzyy).

This average was obtained by substituting the second and third
columns of the rotation matrix (B.1) for the unit vectors ε and
k/k in the absorption cross-section (A.1) and by averaging
over all angles α, β and γ . The result was then simplified
by using the symmetries of the tensor σi jlm that can be read
from equation (A.2). If the system is non-magnetic, then
σii j j = σ j j ii and the average further simplifies

〈σ(ε,k)〉 = k2

15
(σxxxx + σyyyy + σzzzz + 3σxyxy + 3σxzxz

+ 3σyzyz − σxxyy − σxxzz − σyyzz).

12
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Appendix B. Formulae

B.1. Rotation matrix

In this section we give several expressions for the rotation
matrices.

B.1.1. Axis and angle. The rotation through an angle ψ about
the direction n (a unit vector) is represented by the rotation
matrix R = Id+sinψN+(1−cosψ)N2, where N is the skew-
symmetric matrix with matrix elements Ni j = −∑

k εi jknk , so
that (N2)i j = ni n j − δi j (see [2], p 10).

Conversely, the rotation angle ψ and the rotation axis n
are determined from the rotation matrix R by the relations
cosψ = (tr R − 1)/2, n1 sinψ = (R32 − R23)/2, n2 sinψ =
(R13 − R31)/2 and n3 sinψ = (R21 − R12)/2. This is a
corrected version of the relation given in [2] p 20.

B.1.2. Euler angles. The rotation matrix can be expressed in
terms of the Euler angles α, β and γ (see [2], p 24)

R =
( cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ

)

, (B.1)

where 0 � α < 2π , 0 � β � π and 0 � γ < 2π , cα = cosα,
sα = sinα etc. There is a one-to-one correspondence between
rotations and parameters in this range, except for the cases
β = 0 and π , which describe the rotation through the angle
α + γ and α − γ , respectively, about the axis (0, 0, 1).

B.1.3. Euler–Rodrigues parameters. Although the Euler
angles are more common, the Euler–Rodrigues parameters
have the advantage that the relation between these parameters
and the rotation matrix elements does not involve trigonometric
functions. Thus, they are convenient to derive analytical
expressions. From the rotation axis n and angle ψ , we
define the Euler–Rodrigues parameters α0 = cos(ψ/2), αi =
sin(ψ/2)ni ([2], p 54). In terms of these parameters, the
rotation matrix is

R =
(
α2

0 + α2
1 − α2

2 − α2
3 2α1α2 − 2α0α3 2α1α3 + 2α0α2

2α1α2 + 2α0α3 α2
0 + α2

2 − α2
3 − α2

1 2α2α3 − 2α0α1

2α1α3 − 2α0α2 2α2α3 + 2α0α1 α2
0 + α2

3 − α2
1 − α2

2

)

.

Conversely, the Euler–Rodrigues parameters can be obtained
from the rotation matrix R ([2], p 54). If tr R �= −1, then
α0 = √

tr R + 1/2, α1 = (R32 − R23)/(4α0), α2 = (R13 −
R31)/(4α0), and α3 = (R21 − R12)/(4α0). If tr R = −1, then
α0 = 0 and αi = (sign αi )

√
(1 + Rii )/2 for i = 1, 2, 3, with

sign α1 = 1, sign α2 = sign R12, and sign α3 = sign R13.

B.2. Solid harmonics

For a vector r = (x, y, z), the solid harmonics Y m
� (r) are

defined by (see [2], p 71)

Y m
� (r) =

√
(2�+ 1)(�+ m)!(�− m)!

4π

×
∑

k

(−x − iy)k+m(x − iy)kz�−2k−m

22k+m(k + m)!k!(l − m − 2k)! ,

where k runs from max(0,−m) to the integer part of (�−m)/2.
The most important example of solid harmonics is

Y1(r) =
√

3

4π

⎛

⎝

x−iy√
2

z
− x+iy√

2

⎞

⎠ ,

where the upper component is Y −1
1 (r).

B.3. Wigner matrices

There are several representations of the Wigner rotation
matrices. We present here the expressions in terms of Euler
angles and of Euler–Rodrigues parameters. Other formulae
have been derived, for example the recent invariant spinor
representation [21].

B.3.1. Euler angles. For a rotation R expressed in terms of
Euler angles α, β, γ , the Wigner matrix is ([2], p 46)

D�
m′m(R) = e−im′αd�m′m(β)e

−imγ .

Various expressions exist for the reduced Wigner matrix
d�m′m(β). The following formula (valid for half-integer �)
is particularly convenient for computers, because it (almost)
avoids the presence of singular terms ([2], p 50, [3], p 78):

d�m′m(β) = (−1)λ

√
k!(2�− k)!

(k + μ)!(k + ν)!

×
(

sin
β

2

)μ (

cos
β

2

)ν
P(μ,ν)

k (cos β),

where μ = |m − m ′|, ν = |m + m ′|, k = � − (μ + ν)/2 and
λ = 0 if m � m ′, λ = m−m ′ if m < m ′. In this expression, the
only possible numerical difficulty occurs with 00, that should
be set to unity. The Jacobi polynomials P(μ,ν)

k (x) are given by
the formula

P(μ,ν)

k (x) =
k∑

i=0

(
k + μ

i

)(
k + ν

k − i

)(
x − 1

2

)k−i ( x + 1

2

)i

.

For example, the Wigner matrix for first-rank tensors is

D1 =
⎛

⎜
⎝

cosβ+1
2 ei(α+γ ) sinβ√

2
eiα 1−cosβ

2 ei(α−γ )

− sinβ√
2

eiγ cosβ sin β√
2

e−iγ

1−cosβ
2 ei(γ−α) − sinβ√

2
e−iα cosβ+1

2 e−i(α+γ )

⎞

⎟
⎠ ,

where the upper left matrix element is D1
−1−1. Two

useful special cases are d�m′m(0) = δmm′ and d�m′m(π) =
(−1)�−mδm′,−m .

B.3.2. Euler–Rodrigues parameters. In terms of the Euler–
Rodrigues parameters, the Wigner rotation matrix is ([2], p 54)

D�
m′m(R) = √

(�+ m ′)!(�− m ′)!(�+ m)!(�− m)!
×
∑

k

{(α0 − iα3)
�+m−k(−iα1 − α2)

m′−m+k

× (−iα1 + α2)
k(α0 + iα3)

�−m′−k}
× {(�+ m − k)!(m ′ − m + k)!k!(�− m ′ − k)!}−1,

where k runs from max(0,m − m ′) to min(�+ m, �− m ′).
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B.4. Butler’s orientation

The powerful multiplet program developed by Thole and
colleagues is based on Butler’s conventions. For the calculation
of trigonal sites in cubic crystals, it is necessary to know
precisely the relation between the cubic and trigonal reference
frames, which is not clearly stated in Butler’s book. To
determine it, we combine Butler’s tables pp 522, 527 and
549 of [14]. This shows that the transition between spherical
harmonics |1m〉3 in the trigonal axes (i.e. in the O–D3–C3

basis) and spherical harmonics |1m〉4 in the cubic axes (i.e. in
the O–D4–C4 basis) is

|1 − 1〉3 = |1 − 1〉4
(1 − i)(

√
3 + 1)√

24
+ |10〉4

1√
3

+ |11〉4
(1 + i)(

√
3 − 1)√

24
,

|10〉3 = |1 − 1〉4
−1 + i√

6
+ |10〉4

1√
3

+ |11〉4
1 + i√

6
,

|11〉3 = |1 − 1〉4
(1 − i)(

√
3 − 1)√

24
+ |10〉4

−1√
3

+ |11〉4
(1 + i)(

√
3 + 1)√

24
.

This can be rewritten

|1m〉3 =
1∑

m′=−1

|1m ′〉4 D1
m′m(R),

for the rotation R corresponding to the Euler angles α = 3π/4,
β = β0 = arccos(1/

√
3) and γ = π . This corresponds to the

C3z axis of D3 along the (−1, 1, 1) direction of the cube and
the C2y axis of D3 along the (1, 1, 0) direction of the cube
(see figure 11.6 of [14], p 204). The inverse rotation has Euler
angles (0, β0, π/4). More precisely, the rotation

R = R(3π/4, β0, π) =
( 1/

√
6 1/

√
2 −1/

√
3

−1/
√

6 1/
√

2 1/
√

3√
2/3 0 1/

√
3

)

,

(B.2)
transforms any symmetry operation R′ in the D3d axes into the
symmetry operation RR′ R−1 in the cubic axes.

Appendix C. Coupling identities

We gather some useful coupling formulae. If a, b, c and d
are vectors, we denote by a1, b1, c1 and d1 the corresponding
first-rank spherical tensors. Then, according to [3] p 66 and 67,

{a1⊗b1}1 = i√
2
(a × b)1. (C.1)

{{a1⊗b1}0⊗{c1⊗d1}0}0 = 1
3 (a · b)(c · d). (C.2)

{{a1⊗b1}2⊗{c1⊗d1}2}0 = 1√
5
( 1

2 (a · c)(b · d)+ 1
2 (a · d)(b · c)

− 1
3 (a · b)(c · d)). (C.3)

To prove equation (14), we start from the identity

{Pa⊗Qb}c · {Rd⊗Se}c = (−1)2a+b−d
∑

g

(2c + 1)

×
{

a b c
e d g

}

{Pa⊗Rd}g · {Qb⊗Se}g,

where g runs from max(|a − d|, |b − e|) to min(a + d, b + e)
(see equation (13), p 70 of [3]). Equation (14) corresponds to
the case c = 0 because of the special value of the 6 j -symbol
(equation (1), p 299 of [3]),

{
a b 0
e d g

}

= (−1)a+d+g δabδde√
(2a + 1)(2d + 1)

.

The interplay between Wigner matrices and Clebsch–
Gordan coefficients is described by the following identity
(equation (5), p 85 of [3]):

∑

γ

(aαbβ|cγ )Dc
γ γ ′(R) =

∑

α′β ′
(aα′bβ ′|cγ ′)Da

αα′ (R)Db
ββ ′(R).

(C.4)
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